### **EXTRA DIMENSIONS**

Kaustubh Agashe

#### **LECTURE 3**

#### MODIFY GAUGE KK PROFILE

Extra dimension does *not* have analog of GIM factor: coupling to gauge KK (in units of  $g_4$ ),  $a_{s,d} \sim O(1)$  and different

Better picture (Fig. 13): couplings to gauge KK  $\ll 1 \rightarrow$  FCNC suppressed (even if non-universal)

How to modify KK decomposition?

#### **BRANE KINETIC TERMS (I)**

• Localized interactions at fixed points (branes):

Allowed (not on  $S^1$ ) + Generated by loops even if absent/zero at tree-level (hep-ph/0012379, hep-ph/0204342)

$$\mathcal{L}_{5D} = -\frac{1}{4} [F_{MN} F^{MN} + \delta(y) r F_{\mu\nu} F^{\mu\nu}] + \bar{\Psi} (\partial_M + g_5 A_M) \Gamma^M \Psi$$
 (1)

Dimensional analysis:  $[A_M] = 3/2$ ,  $[\Psi] = 2$ ,  $[g_5] = -1/2$ 

• Brane kinetic term has dimension -1 (length)

#### **BRANE KINETIC TERMS (II)**

Different normalization for  $A_M$ :  $A_M \to \hat{A}_M/g_5$ 

$$\mathcal{L}_{5D} = -\frac{1}{4} \left[ \frac{1}{g_5^2} \hat{F}_{MN} \hat{F}^{MN} + \delta(y) \frac{r}{g_5^2} \hat{F}_{\mu\nu} \hat{F}^{\mu\nu} \right] + \bar{\Psi} \left( \partial_M + \hat{A}_M \right) \Gamma^M \Psi$$
 (2)

 $[\hat{A}_M]=1$ , brane kinetic term dimensionless (as in 4D):

$$r/g_5^2 \equiv 1/g_{\mathsf{brane}}^2$$

# KK DECOMPOSITION WITH BRANE TERMS

Consider scalar for simplicity (gauge case is similar)

Summary (homework 2 and hep-ph/0207056 for details): Orthonormality:

$$\int dy f_n^*(y) f_m(y) [1 + r\delta(y)] = \delta_{mn}$$
 (3)

Differential equation:

$$[\partial_y^2 + m_n^2 + r\delta(y)m_n^2]f_n(y) = 0 (4)$$

Solution is linear combination of  $\sin$ ,  $\cos$ :

different one for y=0 to  $y=\pi R$  and

$$y = -\pi R$$
 to  $y = 0$ 

Use conditions such as continuity at y=0, matching discontinuity in derivative to  $\delta(y)$  etc. to solve for coefficients of  $\sin$ ,  $\cos$ 

#### **COUPLING OF ZERO-MODE**

Flat profile (only normalization affected by brane term):

$$g_4 = \frac{g_5}{\sqrt{r + 2\pi R}} \tag{5}$$

• For large brane kinetic terms,

$$g_4 \approx \frac{g_5}{\sqrt{r}} \tag{6}$$

## COUPLINGS OF KK TO BRANES FOR LARGE BRANE KINETIC TERMS

• Coupling to particle (light fermion) localized at y=0 suppressed (compared to zero-mode)  $g_5 \times f_n(0) \sim g_4/\sqrt{r/R}$ 

ullet Coupling to particle (Higgs) localized at  $y=\pi R$  enhanced

$$g_5 \times f_n(\pi R) \sim g_4 \times \sqrt{r/R}$$

Large brane kinetic terms repel gauge KK mode from that brane

#### **FCNC SUPPRESSED**

ullet Similar suppression in coupling to gauge KK for exponential profiles of light fermions (peaked at y=0): r/R provides analog of GIM suppression

New hierarchy:  $r/R \gg 1$ ?

Not really: O(10) enough

## **ELECTROWEAK PRECISION TESTS**

#### 1. 4-FERMION OPERATORS

Compare to SM Z exchange:  $\sim g_Z^2/m_Z^2$ 

Data agrees with SM prediction at  $\sim 0.1\%$  level

For r = 0 (no brane term):

Gauge KK coupling  $\approx \sqrt{2}g_4$  for fermion at y=0 (light fermions near y=0)

$$ightarrow m_{KK} \stackrel{>}{\sim}$$
 a few TeV

ullet Suppressed effect (by  $\sim r/R$ ) for large brane kinetic terms  $\to$   $m_{KK} \sim {\rm TeV}$  easily allowed